Home twilight sky studio Home twilight sky studio

F0525 Чем отличается и какие преимущества спектрофотометрического анализа перед фотоэлектроколориметрическим методом.

ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ (ФА), совокупность методов молекулярно -абсорбционного спектрального анализа, основанных на избирательном поглощении электромагнитного излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соединений с подходящим реагентом. Концентрацию определяемого компонента устанавливают по закону Бугера -Ламберта - Бера. ФА включает визуальную фотометрию спектрофотометрию и фотоколориметрию. Последняя отличается от спектрофотометрии тем, что поглощение света измеряют главным образом в видимой области спектра, реже - в ближних УФ и ИК областях (т. е. в интервале длин волн от ~ 315 до ~ 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10-100 нм) используют не монохроматоры, а узкополосные светофильтры.



Приборами для фотоколориметрии служат фотоэлектроколориметры (ФЭК), характеризующиеся простотой оптических и электрических схем. Большинство ФЭК имеет набор из 10-15 светофильтров и представляет собой двухлучевые приборы, в которых пучок света от источника излучения (лампа накаливания, редко ртутная лампа) проходит через светофильтр и делитель светового потока (обычно призму), который делит пучок на два, направляемые через кюветы с исследуемым раствором и с раствором сравнения. После кювет параллельные световые пучки проходят через калиброванные ослабители (диафрагмы), предназначенные для уравнивания интенсивностей световых потоков, и попадают на два приемника излучения (фотоэлементы), подключенные по дифференциальной схеме к нуль-индикатору (гальванометр, индикаторная лампа). Недостаток приборов - отсутствие монохроматора, что приводит к потере селективности измерений; достоинства - простота конструкции и высокая чувствительность благодаря большой светосиле. Измеряемый диапазон оптической плотности составляет приблизительно 0,05-3,0, что позволяет определять многие элементы и их соединения в широком интервале содержаний - от ~ 10-6 до 50% по массе. Для дополнительного повышения чувствительности и селективности определений существенное значение имеют подбор реагентов, образующих интенсивно окрашенные комплексные соединения с определяемыми веществами, выбор состава растворов и условий измерений. Погрешности определения составляют около 5%.

Идентификацию ЛВ можно провести по характеру спектральных кривых в различных растворителях, положению максимума и минимума светопоглощения или их отношению (при различных длинах волн). Для количественного спектрофотометрического анализа важен выбор аналитической полосы поглощения. Последняя должна быть свободна от наложения полос поглощения других компонентов смеси и иметь достаточно высокий удельный показатель поглощения анализируемого вещества.

Фотоколориметрия отличается от спектрофотометрического анализа тем, что анализируемое вещество с помощью какого-либо реагента переводят (количественно) в окрашенное соединение. Вначале получают окрашенные растворы, используя растворы стандартных образцов (ГСО или PCO). Измерение оптической плотности производят на фотоколориметрах. Затем строят калибровочный график зависимости интенсивности поглощения окрашенных растворов от концентрации, по которому рассчитывают содержание в испытуемых образцах ЛB или ЛФ.

Метод дифференциальной спектрофотометрии и фотоколориметрии основан на измерении светопоглощения анализируемого раствора относительно раствора сравнения, содержащего определенное количество стандартного образца испытуемого вещества или его заменителя. Такой прием приводит к изменению рабочей области шкалы прибора и снижению относительной погрешности определения до ±0,5-1%, т.е. сопоставимой с титриметрическими методами.

Производная УФ-спектрофотометрия является одним из вариантов дифференциальной спектрофотометрии. Если в дифференциальной спектрофотометрии используют разность оптических плотностей при одной и той же длине волны, то в производной - при двух длинах волн, разделенных небольшим интервалом. Этот вариант основан на выделении индивидуальных полос из УФ-спектра, который представляет собой сумму налагающихся полос поглощения или полос, не имеющих четко выраженного максимума. При этом на спектральных кривых в координатах производная-длина волны появляются полосы с отчетливо выраженными максимумами и минимумами. Благодаря этому можно идентифицировать сходные по химической структуре вещества, повысить избирательность анализа и выполнять количественное определение двух-, трехкомпонентных смесей более экономично и эффективно, чем титриметрическими методами.

Спектрофотометрический анализ имеет ряд преимуществ по сравнению с фотоколориметрическим. При использовании спектрометрии оптическую плотность анализируемых растворов измеряют спектрофотометром с использованием монохроматического излучения, поэтому значительно увеличивается чувствительность и точность определения. Кроме того, спектрофотометрический метод применим как для анализа одного вещества в растворе, так и для анализа многокомпонентной системы веществ, не реагирующих химически друг с другом.

Спектрофотометрия позволяет работать не только с окрашенными растворами, поглощающими свет в видимой области спектра, но и с прозрачными растворами, которые поглощают излучение в УФ- или ИК-областях спектра.




Отличия спектрофотометрии и фотоэлектроколориметрии

F0525  Чем отличается и какие преимущества спектрофотометрического анализа перед фотоэлектроколориметрическим методом.



<----    В начало статьи    ---->   




Яндекс.Метрика



Внимание! Информация на сайте предназначена исключительно для специалистов и учащихся фармацевтических специальностей. Описание применения любого растительного сырья носит публицистический характер и не является рекомендацией.
Для назначения лечения каким-либо из указанных на сайте препаратов обратитесь к сертифицированному специалисту или лечащему врачу.